
 43

3
Characterizing the Exception Flow in Aspect-Oriented
Programs: The Empirical Study

This chapter describes an empirical study whose goal is to evaluate the

impact of AOP on exception flows of AspectJ programs, comparing them with its

pure Java counterparts. The empirical study is presented according to the steps

defined by Wohlin et al. (2000). The study configuration is defined in terms of (i)

its goals and hypotheses, (ii) the criteria used for the target systems selection, (iii)

the methodology employed to conduct the exceptional code analyses, and (iv) the

description of actual execution of our study. The investigation relies on

determining in multiple Java and AspectJ versions which exception-handling

faults are introduced in AO releases. The consequences of such faults vary from

uncaught exceptions to unintended handler actions.

3.1.
Study Setting

In the case study described here, OO and AO versions of three real

applications were compared in order to observe the positive and negative effects

caused by aspects on their exception flows. Specific procedures were undertaken

in order to distinguish AOP liabilities for exception handling implementation from

well-known intrinsic impairments of OO mechanisms on exception handling

(Miller and Tripathi, 1997) (see Section 3.1.1). These procedures were important

to detect whether and which aspect-oriented mechanisms are likely to lead to

unexpected and error-prone scenarios involving exception handling.

In this study we opted to conduct a case study instead of a controlled

experiment. The reason is twofold. Firstly, differently from a controlled

experiment, in a case study we have a low level of control over the study situation

(the target systems were developed by third party developers). Secondly, while

controlled experiments sample over the variables that are being manipulated, case

studies analyze variables representing typical real situations (Wohlin et al., 2000).

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 44

Consequently, if on the one hand there are some factors which may influence the

result of the study (e.g. expertise of developers - see Section 3.2.3), on the other

hand real development situations can tell us much about the problem being

studied.

Thus, the hypothesis of our case study were the following: (i) the null

hypothesis (H0) for this study states that there is no difference on the robustness

of exception handling code in Java and AspectJ versions of the same system; (ii)

the alternative hypothesis (H1) is that the impact of aspects on exception flows of

programs can lead to more program flaws associated with the exception flow.

3.1.1.
Target Systems

One major decision that had to be made for our investigation was the

selection of the target applications. We have selected three medium-sized systems

to which there was a Java version and an AspectJ version available. Each of them

represents a different application domain, and adopts heterogeneous and realistic

ways of incorporating exception handling into the code. The target systems were:

Health Watcher (HW) (Soares, 2004; Kulesza et al., 2006; Greenwood et al.,

2007), Mobile Photo (MP) (Figueiredo et al., 2008) and JHotDraw
5
 (JHD)

(Deursen et al., 2005; Marin et al., 2007).

3.1.1.1.
Health Watcher

The Health Watcher (HW) system (Soares, 2004; Kulesza et al., 2006;

Greenwood et al., 2007) is a Web-based application that allows citizens to register

complaints regarding issues in health care institutions. There are 9 versions of

HW system available
6
, implemented in both OO and AO designs. They vary in

terms of the number of functionalities available and some minor design decisions.

All versions of HW adopt the Layer architectural pattern (Buschmann et al., 1996)

which separates data management, business, communication, and presentation

concerns. According to this pattern, the elements from each layer communicate

5 Project Homepage: http://www.jhotdraw.org/
6
 Homepage that contains the all versions of Health Watcher system source code:

http://www.comp.lancs.ac.uk/computing/users/greenwop/tao/

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 45

only through well defined layer interfaces. The purpose of a layer interface is to

define the set of available operations - from the perspective of interacting client

layers - and to coordinate the layer response to each operation. Several design

patterns were used to refine each layer of this architecture. Some of them are: the

Facade Pattern (Gamma et al., 1995), the Command Pattern (Gamma et al., 1995)

and the Persistent Data Collections (PDC) pattern (Massoni et al., 2001). In this

study we selected the 1
st
 and the 9

th
 versions to conduct our analysis.

Figures 3 and 4 present representative slices of the 9
th

 version in both OO

and AO architecture designs. In the OO and AO designs of HW system, the GUI

layer is implemented using Java Servlets
7
. The Servlet executes commands

(implemented according to the Command Pattern) which access

HealthWatcherFacade. This facade works as a portal to access the business

collections (e.g., ComplaintRecord and EmployeeRecord), which are the

elements responsible for accessing the Data layer. Figure 3 also illustrates how

some concerns are spread over system elements in OO design.

Business Layer

GUI Layer

Data Layer P P

HWServlet

ComplaintRecord

IComplaintRepository

ComplaintRepositoryyRDB EmployeeRepositoryyRDB

IPersistenceMechanism

PersistenceMechanism

EmployeeComplaint

IEmployeeRepository

EmployeeRecord

HealthWatcherFacade

P

P

P

P P P

Command

P

OpCommand

P

Command Design Pattern

Legend:

Persistence Concern

Concurrency Concern

D

C

P

C C

D

D

C C

D

T Transaction Concern

T

Figure 3. The OO design of Health Watcher system (version 9).

7 Although the original version of Health Watcher system presented in (Sergio, 2004) implements the distribution layer, this
concern was not used in our study. This is the reason why it is not represented on pictures that depicts HW architecture.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 46

In the AO design presented in Figure 4 some concerns that were tangled and

scattered in the OO decomposition counterpart were “aspectized” (i.e., refactored

to aspects). Basically, in the AO release of the HW system presented below,

crosscutting concerns relative to persistence, transaction management, and

concurrency control were represented as aspects. Moreover, the exception

handling concern of every crosscutting concern was also represented a set of

aspects (e.g., HWPersistenceExceptionHandler and

HWTransactionExceptionHandler) as illustrated in Figure 4. Such exception

handling aspects (also called handler aspects) intercept the points in the code

where exceptions thrown by the corresponding crosscutting concerns should be

handled.

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<aspect>>
HWPercistenceExceptionHandler

EmployeeRecord

HealthWatcherFacade

IComplaintRepository

ComplaintRepositoryRDB

<<aspect>>
HWTransactionExceptionHandler

Complaint

IEmployeeRepository
<<aspect>>

HWTimestamp

<<aspect>>
HWTransactionn

ComplaintRecord

<<aspect>>
HWPercistence

EmployeeRepositoryRDB

Employee

Business Layer

Data Layer

P P

P P

T

C

Command Design Pattern

Exception Handling Concern (*)E

Legend:

Persistence Concern

Concurrency Concern

D

C

P

GUI Layer

HWServlet

Command

D

OpCommand

D

<<aspect>>
ServletCommanding

D

<<crosscuts>>

P

<<crosscuts>>

T

P

E

E

D

D

D

(*) Only the exception handling of crosscutting concerns are represented in this diagram.

T Transaction Concern

Figure 4. The AO design of Health Watcher system (version 9).

3.1.1.2.
Mobile Photo

The Mobile Photo (MP) is a software product line (SPL) of applications that

manipulate media (e.g., photo, music and video) on mobile devices, such as cell

phones (Figueiredo et al., 2008). There are 6 releases of this SPL available. All

SPL versions adopt the same architecture style, varying in terms of the number of

functionalities available and design decisions taken in each version. In this study

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 47

we selected the 4
th

 and 6
th

 versions. The 4
th

 version allows the manipulation of a

single type of media (i.e., photo) and the 6
th

 allows the manipulation of photos and

audio files. The manipulation tasks available in MP comprise the following: to

sort a list of media, to choose the favorites, to copy a media and to send SMS

messages including a specific media.

Figure 5 illustrates the OO design of the 6
th

 version of MP. It adopts a

model-view-controller architecture style. When an item on the screen is selected, a

command is executed by a specific controller, then the operation is performed on

the model layer and the screen is updated to reflect the changes. Each set of

commands is organized in a specific controller, for instance the

PhotoViewController accounts for the operations related to the photo view

concern.

PhotoViewScreenSMSScreen PlayMediaScreenMediaListScreen

CommandList

PhotoView
Controller

MusicPlay
Controller

CommandListener

AbstractController

PhotoAlbumDataVideoAlbumData MusicAlbumData

AlbumData

PhotoAccessorVideoAccessor MusicAccessor

MediaAccessor

Media
Controller

View

Controller

Model

MainUIMidlet

Exception Handling

Legend:

Select favorites optional feature

Count views optional feature

E

C

F

Send SMSS

S

SCFE E E

E

EEEE

E

Figure 5. The OO design of Mobile Photo System (version 6).

It the AO design some concerns were implemented as aspects as illustrated

in Figure 6. The Exception handling concern was partially aspectized, and handler

aspects (i.e., aspects responsible for handling exceptions signaled in the system by

elements of the base code or other aspects) were defined per layer. This system

has used the catalog of best practice defined in (Filho et al., 2007) to guide error

handling code modularization. Some functional requirements comprising the

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 48

manipulation of different kinds of media (i.e., photos and audio files) were also

implemented as aspects: to sort a list of medias, to choose the favorites, and to

copy a media and sending SMS.

PhotoViewScreenSMSScreen PlayMediaScreenMediaListScreen

CommandList

PhotoView
Controller

MusicPlay
Controller

CommandListener

AbstractController

PhotoAlbumDataVideoAlbumData MusicAlbumData

AlbumData

PhotoAccessorVideoAccessor MusicAccessor

MediaAccessor

SendSMSAspect

Media
Controller

View

Controller

Model

<<aspect>>

ControllerEH

<<aspect>>

ScreenrEH

<<aspect>>
ModelEH

<<crosscuts>>

<<crosscuts>>
<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<aspect>>

MainUIMidlet

CountViewsAspect
<<aspect>>

FavoritesAspect
<<aspect>>

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

Exception Handling

Legend:

Select favorites optional feature

Count views optional feature

E

C

F

E

E

E

C

Send SMSS

S

F

Figure 6. The AO design of Mobile Photo System (version 6).

3.1.1.3.
JHotDraw

JHotdraw framework is an open-source framework for building graphical

drawing editor applications. Drawing editors are used to visually arrange

graphical figure objects on a drawing area, and are present on nearly every

computer. Figures 7 and 8 present an overview of the OO and AO design8 of

JHotdraw; both adopt the Model-View-Controller architectural pattern

(Buschmann et al., 1996).

8 JHotdraw comprises a Java Swing and an Applet interface, but in our study, we have focused in the java Swing version
JHotdraw.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 49

Commands

Drawing Editor

AlignCommand

Command

RedoCommand

MenuDrawApplication

Undo Command Concern

Legend:

Persistence Concern

Design Contracts Concern

U

C

P

C C

Figures

AttributeFigure

FigureConector

RectangleFigure

HandleTracker

C

Drawing View

DrawingDrawingView

UndoableCommand

P

...

P

...

C

U

U

UndoManager

U

<<inner>>
UndoActivity

C

<<inner>>
UndoActivity

C

<<inner>>
UndoActivity

CUUU

U U U

Figure 7. The OO design of JHotDraw.

Commands

Drawing Editor

AlignCommand

Command

RedoCommand

MenuDrawApplication

Undo Command Concern

Legend:

Persistence Concern

Design Contracts Concern

U

C

P

Figures

AttributeFigure

FigureConector

RectangleFigure

BringToFrontCmd

Drawing View

DrawingDrawingView

...

...

U

UndoManager

<<aspect>>
AlignCommandUndo

<<aspect>>
RedoCommandUndo

<<aspect>>
BringTpFrontComdUndo

U

U

U

<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

<<inner>>
UndoActivity

U

<<inner>>
UndoActivity

U

<<inner>>
UndoActivity

U

<<aspect>>
UndoableCommand

U

<<crosscuts>>

<<crosscuts>>
<<crosscuts>>

<<aspect>>
CommandContracts

C

<<aspect>>
PersistenceRectangleFigure

<<aspect>>
PercistenceAttributeFigure

PP

<<crosscuts>><<crosscuts>>

U

<<crosscuts>>

Figure 8. The AO design of AJHotDraw.

The AO version of the JHotDraw (AJHotDraw) system was built through a

well defined set of refactoring steps (Deursen et al., 2005; Marin et al., 2007)

whose goal was to modularize crosscutting concerns. Most of the aspects derived

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 50

from these refactoring steps are composed by intertype declarations. Some

refactoring steps moved specific methods from classes to aspects, such as the

methods related to persistence and undo concerns (see Figure 8). Since, the

exception handling concern was not aspectized in JHotdraw, the handlers defined

for the exceptions thrown by the refactored methods (moved to aspects) remained

on the same places on the base code. In the AO version some concerns were

refactored to aspects: the persistence concern, the undo command concern and

some design contracts related to command execution.

3.1.1.4.
Characteristics of the Target Systems

As mentioned before, in this study, more than one version was evaluated for

some target systems. Table 2 summarizes the crosscutting concerns that were

implemented as aspects in the AO versions of each target system.

Table 2. Crosscutting concerns per target system version.

The target systems were also selected because they met a number of relevant

additional criteria for our intended evaluation (Section 3.2). First, they are non-

trivial software projects and particularly rich in the ways exception handling is

related to other crosscutting and non-crosscutting concerns. Second, the behavior

of exception handlers also significantly varied in terms of their purpose, ranging

from error logging to application-specific recovery actions (e.g., rollback). Third,

System Versions and Respective Crosscutting Concerns

Version 1: concurrency control, persistence (partially) and exception handling (partially).
Health Watcher

(HW)
Version 9: concurrency control, transaction management, design patterns (Observer,

Factory and Command), persistence (partially) and exception handling (partially).

Version 4: exception handling and some functional requirements comprising photo

manipulation, such as to sort a list of photos, to choose the favorites, and to copy photo.
Mobile Photo

(MP)
Version 6: exception handling and some functional requirements comprising the

manipulation of different kinds of media (i.e., photos and audio files), such as: to sort a

list of medias, to choose the favorites, and to copy a media and sending SMS).

AJHotDraw (HD)
Version 1: persistence concern, design policies contract enforcement and undo

command.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 51

each of these systems contains a considerable amount of code dedicated to

exception handling, within both aspects and classes, as detailed in Table 3.

Number of: OO AO OO AO OO AO OO AO OO AO

Lines of code 6080 5742 8825 7838 2540 3098 1571 1859 21027 21123

Lines of code for exception handling 1167 854 1889 1242 474 424 356 296 320 341

Classes 88 90 132 129 46 49 30 29 288 279

Aspects 0 11 0 24 0 14 0 10 0 31

try blocks 131 118 233 173 49 40 36 24 60 61

catch blocks 285 177 481 266 69 60 52 38 67 72

throw clauses 227 182 334 229 21 18 20 17 52 56

try blocks inside classes 131 108 233 161 49 21 36 9 60 61

catch blocks inside classes 285 164 481 252 69 28 52 16 67 72

throw clauses inside classes 227 176 334 219 21 4 20 4 52 51

try blocks inside aspects n/a 10 n/a 12 n/a 19 n/a 15 n/a 0

catch blocks inside aspects n/a 13 n/a 14 n/a 32 n/a 22 n/a 0

throw clauses inside aspects n/a 6 n/a 10 n/a 14 n/a 13 n/a 5

after advices n/a 4 n/a 22 n/a 30 n/a 15 n/a 15

around advices n/a 5 n/a 6 n/a 21 n/a 17 n/a 18

before advice n/a 3 n/a 4 n/a 5 n/a 2 n/a 15

HotDrawHealth Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6

Table 3. Code characteristics per system.

Finally, AOP was applied in different ways through the system releases: (i)

aspects were used to extract non-exception-handling concerns in JHotDraw, and

all exception handlers are defined in the base code, (ii) aspects were used to

modularize various crosscutting concerns in the Mobile Photo product line,

including exception handling apart from the original release, and (iii) aspects were

used to partially implement error handling in Health Watcher, where other

behaviors were also aspectized. AOP best practices were applied to structure such

systems as stated in (Soares et al., 2006; Greenwood et al., 2007; Marin et al.,

2007; Figueiredo et al., 2008). Similar to Java releases, all the AspectJ releases

were implemented and changed by developers with around three years of

experience in aspect-oriented design and programming. In fact, HW and MP

systems have been used in the context of other empirical studies focusing on the

assessment and comparison of their Java and AspectJ implementations in terms of

modularity and stability (Greenwood et al., 2007; Figueiredo et al., 2008).

Alignments of Java and AspectJ versions have been undertaken in order to

guarantee both were implementing the same normal and exceptional

functionalities.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 52

3.1.2.
Reasoning About the Exceptional Behavior

Reasoning about the exception flow of programs can easily become

unfeasible if done manually (Robillard and Murphy, 1999). To discover the

exceptions that can flow from a method, the developer needs to recursively

analyze each method that can be called from such method - due to the use of

unchecked exceptions. Moreover, when one method from a library is used, the

developer must rely on library documentation, which most often is neither precise

nor complete (Thomas, 2002; Sacramento et al., 2006).

Thus to support the reasoning about the flow of exceptions in AspectJ

programs in our study we had to implement the exception flow analysis tool called

SAFE briefly described on the next section and detailed in Chapter 5.

3.1.3.
Automated Exception Flow Analysis

Current exception flow analysis tools (Robillard and Murphy, 2003; Fu et

al., 2005) do not support AOP constructs. Even the tools which operate on Java

bytecode level (Fu et al., 2005; Fu and Ryder, 2007) cannot be used in a

straightforward fashion. They do not interpret the aspect-related code included on

the bytecode after the weaving process of AspectJ. Hence, we developed a static

analysis tool, called SAFE (Static Analysis for the Flow of Exceptions), to derive

exception flow graphs on AspectJ programs and support our investigation on

determining flaws associated with exception flows. This tool is based on the Soot
9

framework for bytecode analysis and transformation (Vallée-Rai et al., 1999) and

is composed of two main modules: the Exception Path Finder and the Exception

Path Miner. Both components are described next, and more detailed information

can be found at Chapter 5.

• Exception Path Finder. This component uses SPARK, one of the call

graph builders provided by Soot (Lhotak, 2002), also used by other static

analysis tools (Fu et al., 2005). The Exception Path Finder generates the

exception paths for all checked and unchecked exceptions, explicitly

9
 http://www.sable.mcgill.ca/

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 53

thrown by the application or implicitly thrown (e.g. via library method) by

aspects and classes. It associates each exception path with information

regarding its treatment. For instance, whether the exception was uncaught,

caught by subsumption or caught by the same exception type. In this study

we are assuming that only one exception is thrown at a time – the same

assumption considered in (Fu et al., 2005; Fu and Ryder, 2007)
10

. Listing 2

below illustrates a simplified version of the tool output. The first element

in the exception path is the exception signaler and the last element is its

handler, followed by the handler type (e.g., subsumption, specific handler

or uncaught).

 Listing.2. Example output from the exception flow analysis tool.

• Exception Path Miner. This component classifies each exception path

according to its signaler (i.e., class method, aspect advice, intertype or

declare soft constructs) and handler. Such classification helps the

developer to discover the new dependencies that arise between aspects and

classes on exceptional scenarios. For instance, an exception can be thrown

by an aspectual module and captured by a class or vice-versa. These

different dependencies represent seeds to manual inspections whose goal is

to evaluate the fault proneness of the abnormal code in AO systems. More

details about the tool implementation are described in Chapter 5.

3.1.4.
Inspection of Exception Handlers

To discover the action taken inside each exception handler, we performed a

complementary manual inspection. It consisted of examining the code of each

10
 In parallel applications, more than one component executing in parallel may detect an

exceptional condition and signal an exception. These scenarios, however, are not tackled by the

approach defined in this work.

(Signaler)<healthwatcher.persistence.TransactionManagementAspect: void afterReturning()>

(Intermediate Element)<healthwatcher.business.HealthWatcherFacade: void insert(…)>

(Handler)<healthwatcher.view.command.InsertHealthUnit: void executeCommand (…)>

(Action) Subsumption: org.aspectj.lang.SoftException captured by java.lang.Exception

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 54

handler associated with exception paths found by the exception flow analysis tool

(Section 3.1.3). Such manual inspections were also targeted at: discovering the

causes for uncaught exceptions and exception subsumptions and removing

spurious paths reported by the tool. The manual inspection enabled us to

systematically discover bug hazards associated with Java and AspectJ modules on

the exception handling code. A bug hazard (Binder, 1999) is a circumstance that

increases the chance of a bug. For instance, type coercion in C++ is a bug hazard

because it depends on complex rules and declarations that may not be visible

when working with a class.

Category Description

Error Reporting

exception message The message attribute defined on the exception object
(exception. getMessage()) is presented to the user.

customized message A user-defined message generally describing the failure is
presented to the user.

incorrect user message A message that is not related to the failure that happened is
presented to the user.

Error Propagation

Uncaught No handler catches the exception.

new exception The handler catches an exception, (i) creates a new exception
and (ii) throws it.

Wrap This category is a specialization of the previously described
category (i.e., new exception). In this case, the handler
catches the exception, and stores the original exception in a
new exception which is thrown.

convert to soft This category is a specialization of wrap category. In this
case, the exception is wrapped into a SoftException. This
action is specific to AspectJ programs, and occurs when the
declare soft construct is used.

Error Local Handling

Swallowing The handler is empty.

Logging Some information related to the exception is logged, and no
other action is taken.

framework default action To avoid uncaught exceptions some application frameworks
such as java.swing, define catch classes that handle any
exception that was not caught by the application and performs
a default action (e.g. kill the thread which threw the
exception.).

application specific action A specific action is performed (e.g., rollback).

Table 4. Categories of handler actions and corresponding descriptions

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 55

Each handler action was classified according to one of the categories

presented in Table 4. We can observe that each handler action category in Table 4

can of one of the following types: (i) Error Reporting when the action taken

inside the handler is concerned in presenting an error message to the user; (ii)

Error Propagation when the handler propagates the error to higher levels; and

(iii) the Error Local Handling that comprises the handler actions locally handles

the exception (without reporting or propagating).

3.1.5.
Study Operation

 This study began in March 2007 and was concluded in November 2007.

During this period target systems were selected, the static analysis tool was

executed for each target system, and the exception handling code of each system

was manually inspected. Figure 9 illustrated the main study steps conducted per

target system.

1. Discover the

exception

paths

2. Find the

relation between

aspects and

classes on

exceptional

scenarios

Application code

(source or bytecode)

3. Analyze the

empirical data:

Signaler-Handler

relation

SAFE

(exception path finder)

Aspect

Aspect

<<crosscuts>>

Aspect

Aspect

<<crosscuts>>

<exception>:

<signaler>: <handler>

Exception Silanelrs (aspect or class)

Exception handlers (aspect or class)

Exception Paths

GUI

Business

BD

SAFE

(exception path miner)

4. Perform

detailed manual

inspections

Aspect

Aspect

<<crosscuts>>

Aspect

Aspect

<<crosscuts>>

Application source code

Refined findings

H ealth Watc her AO V1

79.1%

13.7 %

85.0%

0%

20%

40%

60%

80%

100%

Uncaught S ame S ub

H ealth Watcher AO V9

50.8%

92.3 %

1 00%

Uncaught S ame S ub Uncaught

H ealth Watcher AO V1

79.1%

13.7 %

85.0%

0%

20%

40%

60%

80%

100%

Uncaught S ame S ub

H ealth Watcher AO V9

50.8%

92.3 %

1 00%

Uncaught S ame S ub Uncaught

0

100

200

300

400

500

600

OO AO OO AO

Health Watcher V1 Health Watcher V9

swallowing logging customised message show exception message

application specific action incorrect user message new exception wrap

convert to soft framework default action uncaught

0

20

40

60

80

100

120

OO AO OO AO

Mobile Photo V4 Mobile Photo V6

0

100

200

300

400

500

600

OO AO

HotDraw

E2

Hendler E1

Hendler E2

Method B

Method C

Method A

Hendler E2

Advice X

Hendler E2

Advice X

(a)

Bug patterns in the EH

code of the AO version

Ex: Percentage of uncaught exceptions,

Exceptions thrown by aspects...

Figure 9. Each step conducted in the study operation.

The Exception Path Finder was used to generate the exception flow graph

(i.e., set of all possible exception paths) for every exception occurrence (Step 1).

Then the Exception Path Miner classified each exception path according to its

signaler and handler (Step 2) (see Table 5). We have discarded a few unchecked

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 56

exceptions11 that can be thrown by JVM in almost every program statement

execution and are not normally handled inside the system. The same filter was

adopted by Cabral and Marques (2007), who empirically investigated the

exception handling code in object-oriented systems - otherwise too many

exceptions would be reported and would impair the study analysis (Jo et al.,

2004). This filtering was performed on the static analysis tool. Next, the tool

output was analyzed in detail (Step 3), and we manually inspected each one of the

2.901 exception paths presented in Table 5 (Step 4) – this set of exception paths

comprises the exception paths calculated to every target system. The goal of this

inspection was twofold: (i) discover what caused uncaught exceptions and

exception subsumptions, (ii) identify the handler action (i.e., the action taken

inside the catch clauses) of each exception path, and (iii) determine the bug

patterns associated with exception handling code in AO systems versions.

3.2.
Data Analysis and Interpretation

This section presents the results for each of the study stages. First, it

presents evaluation of the data collected via the exception flow analysis tool. The

following discussion focuses on the information collected during the manual

inspections of each exception path.

 Our goal in providing such a fine-grained data analysis is to enable a

detailed understanding of how aspects typically affected the robustness of

exception handling in each target system and its different releases. In this analysis

we wanted to answer the following questions: Were all the uncaught caused by

flaws on aspectual code? Were all exceptions signaled by aspects becoming

uncaught or caught by subsumption? The following sections describe the

empirical data analyzed in this study and provide answer such questions.

11 The discarded exceptions were the exceptions thrown by JVM (NullPointerException,

IllegalMonitorStateException, ArrayIndexOutOfBoundsException, ArrayStoreException,

NegativeArray SizeException, ClassCastException, ArithmeticException) and exceptions specific

to the AspectJ (NoAspectBoundException).Since such JVM exceptions may be thrown by almost

every operation, including them could generate too much information which could compromise the

usability of the exception analysis. The NullPointerException will be analyzed in a future study

since it requires every expression to be analyzed in order to evaluate if it could lead or not to a

NullPointerException.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 57

3.2.1.
Empirical Data

Table 5 presents the number of exception paths identified by the exception

flow analysis tool (Section 3.1.3). It presents the tally of exception paths per target

system structured according to a “Signaler-Handler” relation. The element

responsible for signaling the exception can be either a class or an aspect. When

the exception is signaled by an aspect, it is signaled by one of its internal

operations: an advice, a method defined as intertype declaration, or a declare

soft construct
12

. An exception occurrence can be caught in two basic ways. It can

be caught by a specialized handler when the catch argument has the same type of

the caught exception type. Alternatively, it can be caught by subsumption when

the catch argument is a supertype of the exception being caught. It is also

possible that the exception is not handled by the application and remains

uncaught. This happens when there is no handler defined for the exception type in

the exception flow.

OO AO OO AO OO AO OO AO OO AO

 Uncaught 5 9 9 0 0 0 0 0 124 112

 Specialized Handler 196 132 277 119 53 26 63 13 64 5
 Subsumption 43 26 47 21 13 0 9 0 316 143

 Specialized Handler n/a 8 n/a 8 n/a 7 n/a 2 n/a 0

 Subsumption n/a 4 n/a 40 n/a 0 n/a 0 n/a 0

 Construct: Advice

 Uncaught n/a 2 n/a 27 n/a 5 n/a 16 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 2 n/a 0 n/a 0
 Subsumption n/a 3 n/a 2 n/a 1 n/a 3 n/a 84

 Specialized Handler n/a 21 n/a 60 n/a 18 n/a 8 n/a 0
 Subsumption n/a 98 n/a 181 n/a 0 n/a 2 n/a 0

Construct: Declare Soft

 Uncaught n/a 32 n/a 1 n/a 42 n/a 40 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 46 n/a 47 n/a 1 n/a 1 n/a 36

 Specialized Handler n/a 0 n/a 63 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 20 n/a 0 n/a 0 n/a 0

 Construct: Intertype

 Uncaught n/a 0 n/a 0 n/a 0 n/a 0 n/a 24

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 121

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 0

Signaler: Class

Signaler: Aspect

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

 Table 5. Classification of exception paths per target system.

12
 declare soft is an AspectJ specific construct. It is associated to a pointcut and wraps any

exception thrown on specific join points in a SoftException, and re-throws it.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 58

The next subsections analyze the exception paths presented in Table 5 in

detail. First, Section 3.2.1.1 contrasts the occurrence of subsumptions and

uncaught exceptions in Java and AspectJ versions of each target system. Section

3.2.1.2 determines what the relation is between certain aspect elements (as

exception signalers) and higher or lower incidences of uncaught exceptions and

subsumptions. Section 3.2.1.3 focuses the analysis on how exceptions thrown by

aspects are typically treated in the target systems.

3.2.1.1.
The Impact of Aspects on How Exceptions are Handled

A recurring question to aspect-oriented software programmers is whether it

is harmful to aspectize certain behaviors in existing object-oriented

decompositions in the presence of exceptional conditions. Hence, our first

analysis focused on observing how aspects affected the robustness of the original

exception handling policies of the Java versions. Figure 10 illustrates the total

number of exception paths on which exceptions (i) remained uncaught, (ii) were

caught by subsumption, or (iii) were caught by specialized handlers, in each of the

target systems.

Health Watcher V1

196
153

43
1735

43

0

100

200

300

400

500

600

OO AO

#
 e

x
c
e
p

ti
o

n
 p

a
th

s

Same Exception Subsumption Uncaught

Health Watcher V9

277
242

47

271

28

9

OO AO

Mobile Photo V4

53
46

13

2

47

0

20

40

60

80

100

OO AO

Mobile Photo V6

63

21

9

6

56

OO AO

Hot Draw

64

316

5

384

136
124

0

100

200

300

400

500

600

OO AO

Figure 10. Uncaught exceptions, subsumptions, and specialized handlers per

system.

Figure 10 shows a significant increase in the overall number of exception

paths. Also significant is the increase of uncaught exceptions and subsumptions

for the AO versions of all the three systems. This increase is a sign that the

robustness of exception handling policies in AspectJ releases was affected and

sometimes degraded when compared to their pure Java equivalents. Of course, the

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 59

absolute number of exception paths is expected to vary due to design

modifications, such as aspectual refactorings. However, the number of uncaught

exceptions and subsumptions ideally should be equivalent between the Java and

AspectJ implementations of a same system, since experimental procedures were

undertaken to assure that both versions implemented the same functionalities.

80.3%

41.5%

83.2%

44.7%

80.3%

48.4%

87.5%

25.3%
12.7%

17.6%

46.9%

14.1%

50.1%

12.5%

7.2%

73.1%

1.0%

62.7%
2.1%

19.7%

2.0% 2.7%
5.2%

11.7%

49.5%

67.5%

24.6%
25.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

OO AO OO AO OO AO OO AO OO AO

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

 Same Exception Subsumption Uncaught

Figure 11. Percentage of uncaught exceptions, subsumptions, and specialized

handlers.

Figure 11 shows the percentage of occurrence for each category of handler

action. In the Mobile Photo V6, for example, the number of uncaught exceptions

represents approximately 57% of the exceptions signaled on the system. In the

Health Watcher V9, the percentage of exceptions caught by subsumption

increased from 14.1% in OO version to 50% in the AO version. This significant

increase raises the risk of unpredictable crashes in AspectJ systems, caused by

either uncaught exceptions or inappropriate exception handling via subsumptions.

Correspondingly, there was a decrease in the percentage of exceptions handled by

specialized handlers in every AO implementation. When the handler knows

exactly which exception is caught, it can take an appropriate recovery action or

display a more precise message to the user. However, this was not the typical case

in the AO implementations of the investigated systems.

3.2.1.2.
The Blame for Uncaught Exceptions and Subsumptions

After discovering that the number of uncaught exceptions and subsumptions

had significantly increased in the AO implementations (Section 3.2.1.1), we

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 60

proceeded with our analysis, looking for the main causes of such discrepancies

between AO and OO versions. Thus, at this stage of our study our hypotheses

were the following: (i) the null hypothesis (H0) both classes and aspects were

equally responsible for signaling the exceptions that became uncaught and were

caught by subsumption; (ii) the alternative hypothesis (H1) was that most of the

exceptions that became uncaught and were caught by subsumption were

exceptions signaled by the aspects, in the three target systems. Figure 11 presents

charts that confirm hypothesis H1; they show the participation of the exceptions

signaled by aspects in the entire number of uncaught exceptions and subsumptions

per system.

79,1%

13,7%

85,0%

0%

20%

40%

60%

80%

100%

Uncaught Sub

100%

50,8%

92,3%

Uncaught Same Sub

100%

43,5%

100%

Uncaught Same Sub

100%

38,1%

100%

Uncaught Same Sub

17,6 %

0,0 %

62,8 %

Uncaught Sub

Health Watcher AO V1 Health Watcher AO V9 Mobile Photo AO V4 Mobile Photo AO V6 HotDraw AO

Same Same

Figure 11. Participation of aspect-signalized exceptions on the whole number of

subsumption, uncaught and specifically-handled exceptions.

In the AO implementations of the Health Watcher and Mobile Photo (in

both versions), the aspects were responsible for signaling most of the uncaught

exceptions and those ones caught by subsumption. In AO versions V4 and V6 of

Mobile Photo, for example, aspects were responsible for 100% of the uncaught

exceptions found in this system. This means that no base class in this system

signaled an exception that became uncaught. In the AO version of JHotDraw, the

aspects were responsible for signaling only 17.6% of the uncaught exceptions, and

the aspects participation on the number of exceptions caught by subsumption was

high (62.8%). This is explained by the fact that the exception policy of the

JHotDraw OO was already based on exception subsumption, thus the exceptions

signaled by aspects were handled in the same way.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 61

3.2.1.3.
Are All Exceptions Signaled by Aspects becoming Uncaught or
Caught by Subsumption?

Figure 5 gives a more detailed view of what is happening with all

exceptions signaled by aspects. We can observe that not all exceptions signaled

from aspects become uncaught or are caught by subsumption. In version 9 of the

AO implementation of Health Watcher, for example, only 7% of the exceptions

signaled by aspects became uncaught, but they represented 100% of the uncaught

exceptions reported to this system (see Figure 3). On the other hand, in the AO

versions of the Mobile Photo, the percentage of exceptions signaled by aspects

that became uncaught is high (68.1% and 80%). As discussed in the next section,

this system was the one that aspectized the exception handling concern.

16,8%
7,0%

68,1%
80,0%

9,1%

2,9%

10,4% 30,7%

26,1% 11,4%

24,3%
12,2%

2,9%
5,7%

90,9%

48,5% 50,1%

2,9%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Health Watcher
AO V1

Health Watcher
AO V9

Mobile Photo
AO V4

Mobile Photo
AO V6

HotDraw AO

Handler on Aspect (Subsumption)

Handler on Class (Subsumption)

Handler on Aspect (Specialized)

Handler on Class (Specialized)

Uncaught

 Figure 12. Handler type of exceptions thrown by aspects.

In Figure 12 the exceptions caught by subsumption on handlers codified

inside classes characterize a potential fault. They may represent scenarios in

which the exception signaled by an aspect is mistakenly handled by an existing

handler in the base code. Another interesting thing to notice in Figure 12 is the

increase in the percentage number of exceptions signaled by aspects and handled

by specialized handlers from version V1 to version V9 of the AO implementation

of Health Watcher. It illustrates that exceptions signaled by an aspect can be

adequately handled.

3.2.2.
Detailed Inspection

In order to obtain a more fine-grained view of how exceptions were handled

in AO and OO versions of the same system we manually inspected each one of the

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 62

2,901 exception paths presented in Table 5. Each path was then classified

according to the action taken in its handler – following the classification presented

in Table 4 (in Section 3.1.4) illustrates the data collected during this manual

inspection. Table 6 illustrates the data collected during this manual inspection.

Handler Action OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, %

swallowing 5 7 140.0 5 7 140.0 0 0 -- 0 0 -- 3 3 100.0

logging 7 1 14.3 12 10 83.3 14 6 42.9 41 13 31.7 4 11 275.0

customised message 12 43 358.3 20 73 365.0 13 4 30.8 0 0 -- 0 0 --

show exception message 43 32 74.4 39 100 256.4 0 0 -- 7 1 14.3 291 285 97.9

application specific action 115 121 105.2 169 160 94.7 3 5 166.7 0 0 -- 8 0 0.0

incorrect user message 17 53 311.8 16 43 268.8 0 0 -- 0 0 -- 0 0 --

new exception 3 3 100.0 3 3 100.0 0 3 -- 1 2 200.0 0 0 --

wrap 37 38 102.7 60 65 108.3 36 0 -- 23 0 0.0 0 0 --

convert to soft 0 40 -- 0 100 -- 0 37 -- 0 13 -- 0 8 --

framework default action 0 0 -- 0 0 -- 0 0 -- 0 0 -- 74 82 110.8

uncaught 5 43 860.0 9 28 311.1 0 47 -- 0 56 -- 124 136 109.7

TOTAL 244 381 156.1 333 589 176.9 66 102 154.5 72 85 118.1 504 525 104.2

Mobile Photo V4 Mobile Photo V6Health Watcher V1 Health Watcher V9 HotDraw

Table 6. Classification of exception paths according to handler actions.

As mentioned before, the total number of exception paths increased in most

of the AO versions. During the manual inspections we discovered there were two

causes for such increases: (i) if one exception is not caught inside a specific

method (e.g., due to a fault on an aspect that acts as handler) this exception will

continue to flow in the call chain, generating new exception paths; and (ii)

specific design modifications bring new elements to the call graph and

consequently lead to more exception paths. Figure 13 illustrates the handler

actions per target system. Overall, it confirms the findings of previous sections

based on the tool outputs: the aspects used to implement the crosscutting

functionalities in the AO version tend to violate the exception policies previously

adopted in each system. Subsequent subsections elaborate further on the data in

Figure 13 and explain the causes behind AspectJ inferiority.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 63

0

100

200

300

400

500

600

OO AO OO AO

Health Watcher V1 Health Watcher V9

swallowing logging customised message show exception message

application specific action incorrect user message new exception wrap

convert to soft framework default action uncaught

0

20

40

60

80

100

120

OO AO OO AO

Mobile Photo V4 Mobile Photo V6

0

100

200

300

400

500

600

OO AO

HotDraw

#
 e

xc
e

p
ti

o
n

 p
a

th
s

 Figure 13. The handler action per target system.

3.2.2.1.
Health Watcher

In the AspectJ versions V1 and V9 of Health Watcher, there was an increase

in the number of exception paths classified as incorrect user message (see

Table 4), in relation to the corresponding OO versions. It means that there were

exception paths in these systems in which a message not related to the exception

that really happened was presented to the user. This characterizes the problem

known as Unintended Handler Action, when an exception is handled by mistake

by an existing handler. The causes of such failures were diverse: (i) mistakes on

the pointcut expressions of exception handling aspects in versions V1 and V9; (ii)

in version V9, an aspect defined to handle exceptions intercepted a point in the

code in which the exception was already caught; (iii) aspects signaled exceptions

and no handler was defined for such exceptions in both versions; and (iv) the

wrong use of the declare soft statement. Each of these causes entails a bug pattern

in AspectJ that will be discussed in Chapter 4. In the version V1 of HW all

softened exceptions became uncaught (categories concert to soft and

uncaught respectively), because the declare soft statement was not used

correctly (see Handler Mismatch in Chapter 4). In version 9 of the AO HW

system the misuse of the declare soft statement was corrected but some

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 64

exceptions remained uncaught or unintended, handled by a catch block on the

base code that presented an incorrect user message.

3.2.2.2.
Mobile Photo

In all AO versions of Mobile Photo there was a significant increase in the

number of uncaught exceptions. This application defined many exception handler

aspects. Due to mistakes on pointcut expressions and a limitation on the use of

declare soft many exceptions became uncaught. Different than the exception

handling policy defined in the HW system - that defined “catch all” clauses on

elements of the View layer - according to the exception policy defined in Mobile

Photo, if the exception was not handled, it became uncaught.

3.2.2.3.
JHotDraw

The target system that presented the lesser impact on the exception policy

was the JHotDraw system. The reason is twofold. First, the exception policy in

OO version was poorly defined, which is visible thanks to the expressive number

of uncaught exceptions and subsumptions (Figure 11). Second, the AO version of

the JHotDraw (AJHotDraw) system was built through a well defined set of

refactoring steps (Deursen et al., 2005; Marin et al., 2007), and most of the aspects

of AJHotDraw are composed by intertype declarations. These refactorings moved

specific methods from classes to aspects, such as the methods related to

persistence and undo concerns. The catch statements for exceptions thrown by

the refactored methods were not affected in the AO version, i.e. they remain in the

same places on the base code. This explains why most of the exceptions signaled

by aspects were caught by base code classes (Figure 12). However, even this

system presented potential faults in the exception handling code (see Chapter 4).

3.2.3.
Study Constraints

The main benefit of an exploratory study such as this one is that it allows

the effect of a new method to be assessed in realistic situations (Wohlin et al.,

2000). Somebody could argue that evaluating the AO and OO versions in a set of

10 releases for three different systems is a limiting factor. Indeed it is not a

representative set, but it contains systems that implement significantly varied

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 65

policies and aspectization processes for exception handling (Section 3.1) and can

give us good insights about the impact of aspects on the exception flow of

programs. Another factor that might influence the study results against aspectual

decompositions could be the developers’ expertise on AOP and AspectJ.

However, as mentioned before (Section 3.1) all the target systems developers had

a significant experience in AOP and AspectJ constructs. Moreover, the fact that

the AO version of each target system was developed after the OO version, could

also impact in the study results, acting in favor or against AO solutions. However,

most AO systems developed so far are derived from an OO version, to which AO

refactorings are typically applied. Therefore, the threats to validity in this study

are not much different than the ones imposed on the other empirical studies with

similar goals (Kulesza et al., 2006; Greenwood et al., 2007; Figueiredo et al.,

2008).

3.3.
Summary

An empirical study was conducted to evaluate the impact of aspects on the

exception flow of AO programs. In this study we evaluated the AO and OO

versions of 3 different systems: Health Watcher (Soares, 2004; Greenwood et al.,

2007), Mobile Photo (Figueiredo et al., 2008) and JHotDraw (Marin et al., 2007).

For Health Watcher and Mobile Photo two releases were evaluated
13

.

These systems represent non-trivial software projects, particularly rich in the

ways exception handling concern is implemented: (i) in Health Watcher the

exception handling concern related to the crosscutting concerns represented as

aspects were also aspectized; (ii) in Mobile Photo the exception handling concern

related to crosscutting and non-crosscutting concerns was aspectized according

catalog of best practice defined in (Filho et al., 2007) to guide error handling code

modularization; and finally (iii) in JHotDraw the exception handling concern was

not aspectized - the exceptions thrown by aspects were handled by elements in the

base code.

A static analysis tool, called SAFE was developed to support the empirical

study (for detailed information concerning the tool implementation see Chapter 5).

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 66

The exception flow graphs of each target system were calculated using the SAFE

tool, and each exception path was classified to its Signaler-Handler relation. After

analyzing the tool output we could observe a significant increase in the number of

uncaught exceptions and exceptions caught by subsumption in the AO versions of

almost all target systems. In the 6
th

 version of Mobile Photo, for instance, there

was no uncaught exception in the OO version, and in the AO version the number

of uncaught exceptions represents approximately 57% of the exceptions signaled

on the system. In the 9
th

 version of Health Watcher, the percentage of exceptions

caught by subsumption increased 36% in the AO version compared to the same

number in the OO version. Such an increase was least significant in JHotdraw

since there were few changes in the way exceptions were caught in OO and AO

versions (most aspects contains intertype declarations and all handlers to the

exceptions signaled by the methods include by intertype declarations remained in

the base code).

The code related to each exception path was manually inspected to refine

the findings and discover the causes of such discrepancies between the way

exceptions were handled in AO and OO versions. We observed that specific

characteristics of AO programs (e.g., use of aspects to handle exceptions, use of

declare soft construct) caused such discrepancies, leading to a more error-

prone exception handling code when compared to OO programs. As a

consequence, more effort (i.e., use of verification approaches and tools) needs to

be expended to assure the robustness of an exception-aware AO system.

Next chapter summarizes the findings gathered during the manual

inspections, which includes: a set of bug patterns that were responsible for

uncaught exceptions and exceptions caught by subsumption in the AO versions,

and lessons learned and further discussions concerning the development of

exception aware AO systems.

 13 The source code of every target system used in this study can be downloaded from: http://www.inf.puc-

rio.br/~roberta/aop_exceptions.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

